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Statistical properties of Weibull estimators 
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The Weibull parameters were estimated for data produced by Monte Carlo simulations using 
three different approaches: linear regression, moments method, and maximum likelihood 
method. The last of these was shown to be the most appropriate approach for the whole 
range of sample sizes of 4 to 100 for estimating the Weibull parameters of a brittle material. In 
each simulation 10000 estimators were produced. Using these values histograms of the 
estimators were created, which showed the asymmetry of the Weibull modulus distribution. 
The integrals of these density functions were directly used to determine confidence intervals 
for the estimated Weibull moduli. Furthermore it was reaffirmed that a minimum of 30 samples 
are required for a good characterization of the strength of a brittle material.- 

1. I n t r o d u c t i o n  
Weibull statistics has become a well-established 
characterization tool in the field of fracture strength of 
ceramics. Based on physical assumptions [1, 2], the 
Weibull equation describes the relationship between 
the probability of failure Pf of a perfectly elastic body 
under a uniaxial tensile stress of G. It  thus predicts the 
inherent dispersion in fracture strength of brittle 
materials. The simplified two-parameter  Weibull 
equation 

[ (:0;l P f = F ( G )  = 1 - exp - (1) 

has been widely used in estimating chance of failure of 
ceramic components. 

The two parameters in Equation 1, the so called 
Weibull parameters, determine the shape and location 
o f  the cumulative distribution function F(G). The 
Weibull modulus m, sometimes called the shape para- 
meter, has a value between 5 and 20 for technical 
ceramics. On a normalized scale, a higher m leads to a 
steeper function and thus a lower dispersion of frac- 
ture stresses. The scale parameter  Go is closely related 
to the mean fracture stress O through 

with F(x) taking values between 0.9 and 1 for the 
above m-interval. Appearing in the denominator  of the 
exponential term - similar to the square Of standard 
deviation in a normal distribution - the parameter  G o 
influences the variance of the fracture stress, i.e. the 
steepness of the function: a smaller Go means - on an 
absolute scale - a lower dispersion. Shih [3] demon- 
strates the influence and mutual interaction of the 
Weibull parameters On the form of the distribution 
function with many examples. 

Once a set of N experimentally measured fracture 
stresses are obtained, it is desirable to fit the Weibull 
equation (Equation 1) to these observations, i.e. to 
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determine the two parameters m and Go, knowledge of 
which leads to complete characterization of the mater- 
ial for the given volume. 

2. Estimation of the Weibul l  parameters 
There are different approaches in estimation of the 
two Weibull parameters. The methods usually em- 
ployed will first be shortly discussed. 

2.1.  M e t h o d  of  l inear  r e g r e s s i o n  
Linear regression is a special case of the least-squares 
method. Taking the logarithm of Equation 1 twice 
gives a linear equation: 

E( )l ml oo ,3, in In 1 - Pf,n 

with the slope b - - m  and a y-intercept of a - -  
- mlnG o. The G, values are the experimentally deter- 

mined fracture stresses ordered as follows: 

(3"1 < G2 < ' ' "  < Gn < " ' "  < G N - 1  < GN 

A probability of fracture will be assigned to each G, 
such that 

Pf,1 < Pf,2 < ..- < Pf., < ... < Pf,N-1 < Pf.N 

where 0 < Pf < 1. Since the true value of Pf,, for each 
G, is not known, it has to be estimated. This estimator 
is to be chosen such that on average, the errors arising 
each time due to this estimation compensate each 
other. There is more than one definition for the pro- 
bability of fracture (see e.g. [4-7]). Four  of the most 
common designations are 

n - 0 . 5  
P f , a  - N (4a) 

n 
P f , b  - -  (4b) 

N + I  
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Pf,c 
n - 0 . 3  

- (4c) 
N + 0 . 4  

n - 0.5 
- (4d)  

N + 0.25 
Pf ,d  

for the nth fracture, from a total of N results. The most 
common definition is that of Pf ,b  (Equation 4b). 

2.2. Method of moments 
A set of data (or a distribution) may be reduced to a 
few numbers through calculating its moments. The 
first moment results in the mean value, and the stand- 
ard deviation may be calculated from the second 
moment of a distribution. 

The derivative of the cumulative distribution func- 
tion (CDF) of the Weibull distribution (Equation 1) 
gives the probability density function (PDF): 

f ( o ) -  d o  - d o  o 0 \ o 0 /  

E ( 0;l x exp - (5) 

Put t ingf (o)  of the Weibull distribution in the general 
definitions of average ~ and variance S~ z of a distribu- 
tion (see e.g. [8]), one can calculate the first two 
moments of the Weibull distribution: 

The standard deviation is the square root of the 
variance. The coefficient of variation Cvar for the 
Weibull distribution is thus 

So 
C . . . . .  ~ e - o 0 { r ( 1  + ~ )  - I-r(1 + m1~)]2}1/2/ 

[o0C(1 + ~ ) ]  (7) 

In the method of moments it is assumed that the mean 
and variance of the experimental data equal those of 
the whole distribution, i.e. infinite number of samples. 
Setting the mean and variance of the experimental 
data in Equation 7, the parameter o0 drops, and 
Equation 7 becomes thus a function of m only and can 
be solved for m using an iterative procedure, e.g. the 
Newton-Rhapson method [9]. 

2.3. Max imum l ikel ihood method 
In this approach values for the two parameters m and 
Oo are sought which result in a Weibull function which 
describes the experimental data that are most likely. 
The probability that for an estimated set of Weibull 
parameters, the experimental results would have occur- 
red, should be maximized. This is equal to the pro- 
bability that all 0,  values occur simultaneously, i.e. the 
product of all fracture probabilities: 

fN = f ( o 1 ) f ( o z ) ' " f ( o , ) ' "  . f (oN- 1)f(ON) 

which is defined as the likelihood function L: 

L - f N  = 1-If (o , )  (8) 
n 

This function should be maximized. To maximize the 
likelihood function L, the partial derivatives with 
respect to m and Oo are set equal to zero. Since taking 
the derivative of a sum is easier than that of a product, 
the derivation is done on the logarithm of L. 

The detailed calculation (for both the moments and 
the maximum likelihood) can be found in the work of 
many authors, e.g. the appendix in Khalili [10]. Sim- 
ilarly to the case of the moments method, the result is 
an equation 

N ~ NE,N= lo,mln o ,  
- -  + l n o .  - X; N o "  - 0 (9) 
m n = l  n = l  n 

in which only the parameter m and the experimental 
data {ol . . . . .  o . . . . . .  ON} appear. Equation 9 may be 
solved for m with an iteration method. 

3.  M o n t e  C a r l o  s i m u l a t i o n s  as  a 

m e a n s  o f  c o m p a r i n g  t h e  e v a l u a t i o n  

m e t h o d s  
It is interesting to find out which method of evaluation 
results in the most accurate estimation of the Weibull 
parameters. A quantitative approach has not yet been 
presented. Instead, Monte Carlo simulations have 
been used to compare the different methods of estima- 
tion. Other authors [11-14] have reported simulation 
results of studies on selected methods. However, either 
the simulation process was not reported in full detail, 
such that a full re-examination could not be followed, 
or too few repetitions of sampling were done. The aim 
of this paper is to contribute supplementary informa- 
tion towards a more comprehensive comparison of the 
methods mentioned above, in order to choose the 
appropriate estimation method in evaluation of the 
Weibull function. 

3.1. Th e  s imula t ion  p r o c e d u r e  
Suppose we have a material whose fracture stress 
variation follows a Weibull distribution of known 
parameters. That is, the exact values of both para- 
meters m and 0 o of the "parent population" are 
known: mt,ue and O0,true. If we now choose N random 
samples of this material, measure the fracture stress of 
each sample, and then evaluate the Weibull function 
for this particular experimental set, i.e. determine the 
estimated parameters m and 00, we will definitely not 
obtain mtrue and Oo,tru~ as results of the estimation 
procedure. This is simply due to the fact that the true 
parameters of a distribution are only known when an 
infinite number of samples are tested. 

In Fig. 1 the procedure of Monte Carlo simulations 
presented in this study is shown. A random generator* 

* The subroutine "ran0" from Press et  al. [9] was used. For every program run (containing N times 10 000 values) the random generator starts 
with the same number.  To avoid repetition of the same set of fracture stresses for all data a given number  X (typed as input from operator) of 
dummy variables were produced at the beginning of each program and the actual simulation would then start with the (X + 1)th random 
variable set equal to PI" 
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~ - - ~  Random n u m b e r  g e n e r a t o r  ] 

N t i m e s  x , w i th  O< x <  1 ; P! - x 

Pre-def ined  Weibull d i s t r i b u t i o n  
w i t h  m = 10 and ~r0 = 1 

At f i c t i t i o u s  f r a c t u r e  s t r e s s e s :  

10 
t.. {O.1, . . , ' O 'n ,  . . . ,  O.N} 

O 
O 
O 
o 

] E v a l u a t i o n  p r o g r a m  : 

- L i n e a r  regress ion ,  or 

- M o m e n t s  m e t h o d s ,  or 

- M a x i m u m  l i k e l i h o o d  m e t h o d  

E s t i m a t e d  W e i b u l l  p a r a m e t e r s :  

m and Cro 

Statistical evaluation 
of the 10000 estimated parameters 

Figure 1 S c h e m a t i c  f low d i a g r a m  of  the  M o n t e  C a r l o  s imula t ions .  

produces a real number in the interval [0, 1]. This 
number will be taken as the probability of fracture Pf,, 
and set in Equation 1, where the known values of mtru~ 
and %,t,ue (here m = 10 and c~o = 1) are already in- 
serted, and solved for ~,. If one repeats this procedure 
N times, there results a set of fictitious fracture stres- 
ses, {ch, . . . ,  % , . . . ,  cyN}. These may then be treated as 
experimental results, the probability of fracture and 
the underlying Weibull function of which are un- 
known. The Weibull function of this set can be evalu- 
ated, using one of the above-mentioned methods. 
Repeating this procedure many times gives a set of 
estimators m and G o, whose distribution around the 
true value may be statistically characterized. 

In the present work we repeated the above proced- 
ure 10000 times for each method (unless otherwise 
mentioned) and each sample size N in order to ensure 
statistical convergence of the results. At the early stage 

of this study some simulations were done with only 
1500 repetitions, the results of which are still repres- 
entative. To study the effect of the number of speci- 
mens, the sample size N was increased progressively 
from 4 to 100. 

4. S imulat ion results 
4.1. The properties of the estimator m 
The simplest way of representing a set of data is 
presumably to take their average. Fig. 2 shows the 
dependence of the normalized estimated parameter 
mavr on sample size N for the three evaluation 
methods (1500 repetitions). For the case of linear 
regression two different definitions were set for the 
probability of fracture Pf. Fig. 3 shows the same 
parameter as a function ofinversed sample size (10 000 
repetitions). Figs 2 and 3 suggest that 

(i) the average value of the estimators approaches 
the true value mtrue with increasing sample size N; 

(ii) the linear regression estimator meR with the 
definition Pf = ( n -  0.5)/N, the moments estimator 
reMora, and the maximum likelihood estimator roME all 
converge to the true value, but rnLR with the definition 
Pf = n / (N + 1), which on average underestimates the 
value of m for all sample sizes, does not converge to 
the true value; 

(iii) the average estimate is extremely sensitive to 
sample size, particularly for the range N < 30; 

(iv) the maximum likelihood estimation results on 
average in the largest overestimation: m .... ME > 
mave,Mo m ~ mave,LR ~ /T/true. 

The coefficient of variation, a common measure for the 
breadth of a distribution, may also be defined for the 
parameter m: 

Std. deviation S,, 
- (10)  

Cvar 'm ~-~ Mean maw 

Since the standard deviation is the dispersion of all 
elements of a distribution about the mean, it seems 
particularly appropriate to evaluate the coefficient of 
variation which represents the breadth with reference 
to the mean (i.e. as a relative value), instead of the 
standard deviation. Fig. 4 shows the coefficient of 
variation Cvar as a function of the inverse square root 
of sample size, 1 /N  a/2 for four different definitions of 
probability of fracture in the linear regression estima- 
tion (1500 repetitions). Similarly to theaverage value 
of the estimators, Cvar decreases with increasing 
sample size, i.e. the more samples one measures the 
more accurate the result. 

For larger sample sizes, all four estimators lie very 
close to the approximation line of slope 1, in agree- 
ment with previous authors [13, 14]. Comparison of 
the behaviour of Cv,r for the four different definitions 
in Fig. 4 shows that the choice of definition in un- 
important. Thus in the following sections only Pf  = (rt 
- 0.5)/N will be considered, in agreement with other 

authors (e.g. [14]). 
Fig. 5 depicts the values of Cv,, for the estimators of 

maximum likelihood and moments method, in addi- 
tion to the best estimator of linear regression (see 
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Figure 3 Est imated Weibull modulus  versus inverse of sample size: ( + ) l inear regression, Pf = (n - 0.5)/N; (n) moments  method;  (*) 
max imum likelihood method.  

b e l o w ) .  C v a  r is likewise sensitive to sample size, espe- 
cially for N < 30. The fitted polynomial goes through 
zero for N = ~ ,  i.e. the true value of the parameter  m 
is obtained only for an infinite number  of samples. For  
any smaller amount,  only an estimate but not the true 
value can be achieved. 

It is clear from Fig. 5 that the maximum likelihood 
estimator results in the smallest Cvar for the whole 
range of sample size. Furthermore,  Fig. 5 shows that 
in order to have an equal measure of accuracy of an 
estimate, a smaller number  of samples is required if 
one uses the maximum likelihood evaluation rather 
than the other methods. 
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Fig. 2 suggests that a minimum amount  of 30 
specimens is required to have an acceptable degree of 
accuracy in obtaining the material parameters. The 
curvatures of all curves in Figs 4 and 5 decrease 
continuously with increasing number of specimens. 
This means that up to about  30 specimens, there is a 
high gain in accuracy for each additional sample; from 
about  30 samples upwards, the gain in precision de- 
creases with increasing sample size. 

The first two moments of a distribution, i.e. the 
average and standard deviation, are accurate descrip- 
tions of the central tendence and dispersion of the 
particular distribution: this is especially true for the 
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normal distribution. Previously it has not been shown 
whether the approximated m values from Monte 
Carlo simulations also follow a normal distribution; 
this has been merely assumed. To find out the distribu- 
tion of the approximated m values, the 10000 values 
were stored and then classified into groups falling in a 
definite interval. 

The range between the highest and the lowest esti- 
mator (mma x - -  retain) was divided into 35 equally sized 
intervals. The number of estimators falling into each 
interval was counted. This number, normalized 
through division by 10000, the total number of esti- 
mators, produces the relative frequency of occurrence, 
the y-value. The x-value was simply the mid-point of 
the given interval. 

The resulting histograms (Figs 6-11) are thus point 
diagrams produced by this procedure and can be seen 
as empirical density functions of the actual estimator. 
No curve fitting was done; the depicted curves are 
merely point distributions. This procedure was done 
only for a constant specimen size of N = 30. Accord- 
ing to Figs 4 and 5, the results can be expected to be 
valid for the whole range of sample sizes examined in 
this work. 

Fig. 6 depicts the PDFs for the method of linear 
regression, with four different definitions of pro- 
bability of fracture (Equations 4a-d) for a sample size 
of N = 30. The striking feature is the asymmetry of the 
density function for parameter m. There is a definite 
lower limit, a minimum value of m, but the parameter 
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Figure 7 Probability density function of Weibull modulus, N = 30: (-  -)  linear regression, Pr = (n - 0.5)/N; (...) moments method; ( 
maximum likelihood method. 

is sometimes drastically overestimated. This is to be 
expected since m may not have any negative values, i.e. 
there exists a lower bound (zero) for the estimator but 
no upper limit. 

Fig. 6 shows that the most common definition for 
Pf, Equation 4b, results in the least acceptable out- 
come: the majority of estimated parameters are fairly 
distant from the true value tn = 10. If linear regression 
is to be chosen as the evaluation method, it should 
only be with the Pf definition of Equation 4a, or the 
closely related definition of Equation 4d, since accord- 
ing to both Fig. 6 and Fig. 4 there is no significant 
difference in their dispersion. Due to the asymmetry of 
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the m distribution, the average is no longer acceptable 
as a characterizing parameter, since a few outlying 
larger estimators pull the average to higher values. 
The median, defined as the value at which there are as 
many points above as below it, i.e. the (x/2)th value of 
x ordered variables, seems more representative for the 
data. 

In Fig. 7 the best curve from Fig. 6 and the density 
functions of moments and maximum likelihood esti- 
mators are shown for N = 30. The distribution curve 
of the maximum likelihood method is the narrowest of 
all for a constant sample size of  30. Following Fig. 5, 
this should hold for the whole range of N = 4 up to 
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Figure 8 Cumulative distribution function of Weibull modulus, N = 30: (---)  linear regression, Pf = (n - 0.5)/N; ('..) moments method; 
( ) maximum likelihood method. 

N = 100. Moreover ,  all three estimations have their 
peak values, i.e. the most  commonly  occurr ing esti- 
mator,  equal to 10, the nominal  value of m. 
The P D F s  of  Fig. 7 can also be presented in the form 
of cumulative functions (Fig. 8). It turns out  that  

(i) for the method of  linear regression with the 
definition Pf = (n - 0.5)/N, the median lies very close 
to the nominal  value: there are as many  overestim- 
ations a m o n g  the estimators as underestimations; 

(ii) the medians of the other  two methods  lie above 
m = 10, e.g. for the method  of maximum likelihood 
one overestimates the parameter  in about  60%, and 
not  50% of the cases. 

F rom Fig. 8 one can also determine confidence inter- 
vals for the estimated parameter  m, without  having to 
make an approximat ion  of m following a normal  
distribution 

The 90% confidence interval for the three methods 
at a constant  sample size of 30 were determined 
directly from Fig. 8 as follows: 

Linear regression 0.741mtrue < m < 1.308rntrue 

Momen t s  method  0.793mtrue < m < 1.353mt~u~ 

Max imum likelihood 0.823mt,~ < m < 1.335mtru~ 

The smallest confidence interval is the one for the 
max imum likelihood method,  which is herewith re- 
commended  by the authors  as the most  appropr ia te  
evaluation method. 

4. 1.1. The inf luence o f  m 
The distributions represented in Figs 6 and 7 were all 
determined for an arbitrarily chosen value of  m = 10. 

Previous authors  (see e.g. [14])  reported that  the value 
of  mtrue itself does not  have an influence on the disper- 
sion of  the m distribution in all methods except the 
moments  method. 

Similar to Fig. 7, the distribution functions of  m 
were simulated for all three methods,  this time for 
three different values of m* (Fig. 9a-c). Fig. 9a-c  show, 
however, that  the dispersion of the parameter  m is 
independent  of the value assigned to rntru, for all three 
evaluat ion methods,  i.e. in order  to study the esti- 
ma to r  properties it is sufficient to do so for one value 
of  mtru~. The results are then valid for all values of 

~/true' 

4.2 .  T h e  e s t i m a t o r  ~0 
It was already reported by previous authors  that no 
significant variation occurs in determining the scale 
parameter  % .  It can be expected that as for the 
parameter  m an increasing sample size results in de- 
creasing error  in estimation of oo. This was reported 
by Schweiger et al. [12]. Hence the distributions of the 
scale factor estimators were merely considered for a 
constant  samples size of 30. Fig. 10 shows the PDF,  
f(cro), of  10 000 estimators from the three evaluation 
methods. 

All three methods seem to result in more  or less 
equally dispersed symmetrical  histograms. To com- 
pare the dispersion of the estimators for the two 
parameters  m and % ,  the P D F s  of  m from Fig. 7 and 
~o from Fig. 10 by maximum likelihood evaluation 
are shown in Fig. 1 lt.  Clearly, o o may  be determined 
with a higher degree of  accuracy than m. Table I lists 

* Repetitions of the simulated data were avoided as described in the first footnote. 
* Note that the depicted PDFs were generated for the same x interval: 0.6 x true parameter as the lower bound, and 1.6 x true parameter as the 
upper bound. Only when this condition is fulfilled is it allowable to compare the relative frequencies (the y values). This is simply due to the 
fact that in order to make a comparison, the area under both curves has to be equal to unity on the same scale. 
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T A B L E  I Statistical properties of Weibull estimators for N = 30, mtrue = 10, CrO,true = 1 

Estimation method Average Median Cv, r 
m ~o m ~o m (3" 0 

Linear regression 10.209 1.0003 10.056 1.0007 0.1733 0.019 56 
Pf = (n - 0.5)/N 
Moments  method 10.484 0.9991 10.299 0.9995 0.1644 0.019 26 
Max imum likelihood 10.594 0.9988 10.424 0.9990 0.1470 0.019 12 
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Figure 10 Probability density function of the scale factor cY0, N = 30: ( + ) linear regression, Pf = (n - 0.5)/N; ( - ) moments  method; (*) 
max imum likelihood method. 
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Figure 11 Probability density function of Weibull parameters estimated by the max imum likelihood method,  N = 30 (10000 estimators 
divided into 150 classes): (,,) Weibull modulus,  m; ( - - - )  scale factor, ~o. 

the average, the median, and the coefficient of  varia- 
tion Cva, for the distributions o fm and cr o at a constant  
sample size of  30. 

The median value is smaller than the average value 
for the m distributions. This is to be expected from the 
asymmetry  of the PDFs .  For  the Cro-distributions, 
which also show a slight asymmetry,  the opposite 

holds true: the est imator cy o tends rather to be under- 
estimated than overestimated. As already mentioned, 
an underest imation of  cy o leads to a steeper dis- 
tribution. 

As can be seen from Table I for both  m and cy o- 
distributions, the median value is closer to the true 
value of the parameter,  i.e. all methods  are less biased 
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in their estimation than was assumed in previous 
work. As for the m distribution, ,the variance - the 
reproducibility - of the true parameter G o is best for 
the maximum likelihood estimators. 

The parameter G o is in the exponent's argument, 
(G/Go)", in the Weibull equation. Hence its dispersion 
may still exert an important effect in the form of the 
Weibull cumulative function despite the small vari- 
ance from its true value. 

4.3.  Examp les  
It is interesting to see the joint effect of the dispersion 
of both parameters in estimating the cumulative func- 

tion. Fig. 12a-d show four (from 10000 simulations) 
selected cases of simulated experiments: the parent 
population (thick curve), the 30 simulated fracture 
stresses: {Gi . . . . .  G3o} to each of which a probability 
of fracture Pe according to Equation 4a was assigned 
in drawing the diagram, and the Weibull distributions 
from the three estimation methods. Table II lists the 
parameters of all three estimated Weibull functions for 
each diagram. 

The cases listed in Table II are arbitrarily chosen. 
All three methods seem to result in estimated Weibull 
curves very closely related to each other. How well a 
particular set of G values represent the parent popula- 
tion determines the final shape and relevance of the 
estimated curve. 
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Figure 12(a-d) Estimated Weibull distributions for simulated experiments, N = 30. Four  arbitrarily chosen cases (see Table II). (o) Simulated 
fracture stress, ( ) parent population, ( ) linear regression estimator, (...) moments  estimator, ( ) max imum likelihood estimator. 

T A B L E  II Estimated Weibull parameters for four arbitrarily chosen cases 

Estimation method Fig. 12a Fig. 12b Fig. 12c Fig. 12d 

m % m % m ~0 m % 

Linear regression 8.79 0.9861 12.84 0.9852 10.86 0.9849 7.89 1.0109 
Pf = (n - 0.5)/N 
Moments  method 8.70 0.9869 12.94 0.9852 10.84 0.9854 9.14 1.0026 
Max imum likelihood 8.33 0.9880 12.10 0.9860 10.54 0.9862 11.86 0.9967 

5. Concluding remarks 
To obtain the Weibull function describing a set of 
experimental data best, i.e. the most correct estima- 
tion, it is important to characterize the statistical 

properties of the different estimators. Knowing the 
exact underlying Weibull distribution for a material, 
one is then able to utilize this material in the best way, 
and also study the effect of different production para- 
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meters or subsequent treatments on the fracture beha- 
viour of the material through comparison of the 
Weibull distributions for the different cases. 

Monte Carlo simulations were used to characterize 
the statistical properties of estimators resulting from 
the three evaluation methods: linear regression, mo- 
ments method, and the method of maximum likeli- 
hood. Firstly, it was reaffirmed that the dispersion of 
the estimator for sample sizes smaller than 30 is much 
too high, i.e. for smaller sample sizes the uncertainty 
and the confidence interval in the obtained estimators 
are much too large. As a compromise between minim- 
izing both the dispersion of the estimator on one hand, 
and the experimental effort on the other hand, the 
authors suggest a sample size of 30. 

To characterize the statistical properties of the esti- 
mators, not only the average and the standard devi- 
ations were determined, but also histograms (density 
functions) of 10000 estimators were generated. It 
was shown that the distribution of the estimators takes 
an asymmetrical form. The median of the distribu- 
tion was therefore used to compare the evaluation 
methods. For  all estimators, the median lies closer to 
the true value of the parameter than the average, i.e. 
the estimators are less biased than assumed up to now. 

The recommendation of other authors was also 
reaffirmed, that for the method of linear regression, the 
definition of probability of fracture most commonly 
used, Pf = n/(N + 1), produces the least acceptable 
outcome. The definition Pf = ( n -  0.5)/N results in 
better estimators. 

Furthermore, it was shown that the maximum like- 
lihood estimator demonstrates the narrowest distribu- 
tion for all sample sizes. Yet the probability that the 
maximum likelihood estimator over- or underestima- 

tes the true Weibull modulus is not 50:50 but about 
60: 40. This means that the maximum likelihood esti- 
mator results more often i n  an overestimation than 
underestimation. Yet since this estimator leads to the 
least dispersion, i.e. best reproducibility, for all sample 
sizes, it is recommended by the authors at this point. 
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